Blocking of the alpha interferon-induced Jak-Stat signaling pathway by Japanese encephalitis virus infection.

نویسندگان

  • Ren-Jye Lin
  • Ching-Len Liao
  • Elong Lin
  • Yi-Ling Lin
چکیده

The induction of alpha/beta interferon (IFN-alpha/beta) is a powerful host defense mechanism against viral infection, and many viruses have evolved strategies to overcome the antiviral effects of IFN. In this study, we found that IFN-alpha had only some degree of antiviral activity against Japanese encephalitis virus (JEV) infection, in contrast to another flavivirus, dengue virus serotype 2, which was highly sensitive to IFN-alpha in the cultured cell system. JEV infection appeared to render cells resistant to IFN-alpha since the IFN-alpha-induced luciferase reporter activity driven by the IFN-stimulated response element (ISRE) was gradually reduced as the JEV infection progressed. Since the biological activities of IFNs are triggered by the Janus kinase (Jak) signal transducer and activation of transcription (Stat) signaling cascade, we then studied the activation of Jak-Stat pathway in the virus-infected cells. The IFN-alpha-stimulated tyrosine phosphorylation of Stat1, Stat2, and Stat3 was suppressed by JEV in a virus replication and de novo protein synthesis-dependent manner. Furthermore, JEV infection blocked the tyrosine phosphorylation of IFN receptor-associated Jak kinase, Tyk2, without affecting the expression of IFN-alpha/beta receptor on the cell surface. Consequently, expression of several IFN-stimulated genes in response to IFN-alpha stimulation was also reduced in the JEV-infected cells. Overall, our findings suggest that JEV counteracts the effect of IFN-alpha/beta by blocking Tyk2 activation, thereby resulting in inhibition of Jak-Stat signaling pathway.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Blocking of interferon-induced Jak-Stat signaling by Japanese encephalitis virus NS5 through a protein tyrosine phosphatase-mediated mechanism.

Japanese encephalitis virus (JEV), a mosquito-borne flavivirus that causes severe human disease, has been shown to block the interferon (IFN)-induced Janus kinase signal transducer and activation of transcription (Jak-Stat) signaling cascade by preventing Tyk2 tyrosine phosphorylation and Stat activation. In this study, we demonstrate that expression of the JEV nonstructural protein NS5 readily...

متن کامل

Identification of residues critical for the interferon antagonist function of Langat virus NS5 reveals a role for the RNA-dependent RNA polymerase domain.

All pathogenic flaviviruses examined thus far inhibit host interferon (IFN) responses by suppressing the Janus kinase-signal transducer and activator of transcription (JAK-STAT) pathway. Both Langat virus (LGTV; a member of the tick-borne encephalitis virus serogroup) and Japanese encephalitis virus use the nonstructural protein NS5 to suppress JAK-STAT signaling. However, NS5 is also critical ...

متن کامل

The Jak-Stat Signaling Pathway of Interferons System: Snapshots

Interferons (IFNs) are a family of small regulatory glycoproteins that play a central role in the defense against viral infections. Although IFNs have been initially discovered as antiviral factors, today they are known as an integral part of the cytokine network that affect a wide range of biological processes. IFNs exert their pleiotropic effects through their multisubunit cell surface recept...

متن کامل

Inhibition of interferon-stimulated JAK-STAT signaling by a tick-borne flavivirus and identification of NS5 as an interferon antagonist.

The tick-borne encephalitis (TBE) complex of viruses, genus Flavivirus, can cause severe encephalitis, meningitis, and/or hemorrhagic fevers. Effective interferon (IFN) responses are critical to recovery from infection with flaviviruses, and the mosquito-borne flaviviruses can inhibit this response. However, little is known about interactions between IFN signaling and TBE viruses. Langat virus ...

متن کامل

Expression of hepatitis C virus proteins inhibits signal transduction through the Jak-STAT pathway.

Hepatitis C virus (HCV) infection is a leading cause of liver disease worldwide. Alpha interferon (IFN-alpha) therapy of chronic hepatitis C leads to a sustained response in 10 to 20% of patients only. The mechanisms of viral persistence and the pathogenesis of hepatitis C are poorly understood. We established continuous human cell lines, allowing the tightly regulated expression of the entire ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of virology

دوره 78 17  شماره 

صفحات  -

تاریخ انتشار 2004